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We show how the formalism developed in a previous paper allows us to exhibit 
the multifractal nature of the infinitely convolved Bernoulli measures v r for ), the 
golden mean. In this second part we show how the Hausdorff dimension of the 
set where the measure has a power law singularity of strength ~ is related to 
the large-deviation function given in Part I. 
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1. I N T R O D U C T I O N  

1.1. The Result  

Ws show in this P a r t  II  h o w  the fo rmal i sm of  o u r  p rev ious  papers  can  be 

appl ied  to the  mul t i f rac ta l  analysis  o f  the infinitely c o n v o l v e d  Bernoul l i  

measure  assoc ia ted  wi th  the go lden  n u m b e r  y. We  state tha t  the H a u s d o r f f  

d imens ion  f ( 0 0  o f  the set where  the measu re  has  a power - l aw  s ingular i ty  
of  s t rength  0~ can  be c o m p u t e d  f rom the l a rge -dev ia t ion  func t ion  f(cx, 1) of  
Par t  I. 

N o t e  tha t  f (ct) ,  whi le  ob t a ined  as a sect ion of  a j o in t  l a rge -dev ia t ion  

func t ion  f(ct ,  1),-is in i tself  intr insic  to the d y n a m i c a l  system ( f 2 , f , p ) .  
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Indeed, if the pointwise limit 

lim loglt(I(x))=~ 
Itl-o log ]I(x)l 

.x 'EI  

exists and is equal to ~ on a set B~ of points x, then the limit exists and 
it is the same for all subsequences of I(x), x ~ B~, whose diameter goes to 
zero. We can then associate with B~ (via the construction of a Frostmann 
measure associated with G) its Hausdorff dimension f(c0. 

In ref. 13 we investigated the transformation of the square 

X, 2y if x<~y, y<~l/2 

~ - y ,  2 y - 1  if x > ~ l - y ,  y>~l/2 

v r is the image of the Sinai-Ruelle-Bowen measure/l via the projection p 
on the x axis. Clearly F is an endomorphism of the square which possesses 
two dilating directions. There are very few examples where the mathematics 
of the multifractal spectrum is well understood: our model is perhaps the 
first for which it has been possible to obtain a result on multifractal 
analysis of an invariant measure in the presence of two interacting dilating 
directions. 

In ref. 13 we studied the relations between a Markov partition Po for 
F and the y-adic partition of the x axis, to establish a dimension formula 
for the measure v~,. The measure v r of a ),-adic interval is computed by 
counting the rectangles of the Markov partition projecting on it. The 
dimension of the measure is therefore associated with the growth of a 
random product of Markov matrices. These matrices are 

I (  i k+l)k+ if n = 2 k + 2  

M 0 0 = [ ( 1  k+lk ) if n - - 2 k + l  

and M(1l) = M(x,,), where x,, e F-"Po.  If 1l i "'" 17q 
intervals, then its v~,-measure equals 

IM(x,,,)... M(x,,,)I 
2 1 x , , i  + - . -  + x . . )  

is the coding of a y-adic 

and its length equals l (x, , )+ -.- + l(x,,q)) (see ref. 13 for more details). 



Multifractal Analysis of Bernoulli Convolutions. II 399 

We denoted by 6 the almost sure value of the local dimension. We 
take the notations of Sections 9 and 10 of Part I. Recall that f < 0  and 
0c2<0. Recall that the function f l ~ F ( f l )  and its Legendre transform 
o~--,f(o~+6) are defined for p, and then for 0q near to zero (cf. Part I). Let 

S(~ + 6 ) =  {x such that . . . .  lim log[ IM(x,,)...(/(x0) +M(x~176 + l(x,,)) " +.,-.I = ~ + 6} 

and let pS(o~+ 6) be its projection on [0, 1 ]. In this paper we prove the 
following result. 

T h e o r e m .  For [~1 sufficiently small, 

HD(pS(oL + 6)) = - f ( ~  + 6) + (~ + fi) 

We prove first an upper bound to the Hausdorff dimension. This is 
done by an easy covering argument. The opposite inequality is more dif- 
ficult and requires the construction of a Frostmann measure. 

1.2. Constructing the Frostmann Measure m* 

We shall construct the unique "Gibbs measure" m =mp, r associated 
with the "pressure" G, and depending also on fl and F. For a suitable 
choice of the parameters, rnp. F will be supported on the set of trajectories 
such that 

log[ IM(x , ) ' . .  M(xo)u[/2 ~'~ '" +-,,,13 ~ 0t + 6 
(l(xo) + ... + l(x,,)) 

The results of Section 10, Part I, show that a good choice is f l=fl* and 
F = F *  corresponding to the value ,2(c) which maximizes 

In fact we shall consider rap. r as invariant measures for the shift on the 
space of trajectories xo, x l ..... xi ~ N, and will interpret the large-deviation 
theorem of Section 10, Part I, as an entropy/dimension formula. More 
precisely, recall the Ledrappier-Young formula c 141 in two dimensions, that 
is, 

h 2 ( m # . . r ' .  ) - -  h l ( m l l . . r .  ) = 22 (D?f l , .F . ) (62 (DI / I . .F .  ) - -  6 1 ( m l l . . r . ) )  

where h, 2, and 6 are entropy, exponent, and dimension, respectively. Here 
h , _ - h l = [ f ( ~ + 6 ) - ( ~ + 6 ) ] o ~ d c ) ,  22=0c2(c), and 6 2 - 6 1 = - f ( ~ + 6 ) -  
(~ + 6). It follows that -f(c~ + 6) + ~ + 6 is the dimension of the projected 
measure of m[l.,F.. 
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We will construct in this way a m e a s u r e  m#..F. =~ m* whose projection 
v* is the Fros tmann  measure: the projection on [0, 1 ] of the set of  trajec- 
tories such that  

log[ [M(x, , ) . . .  m(xo)ul / (g(Xo)  + .. .  +g(x , , ) ) ]  ~ + 6  
log(l(xo) + -.. + l(x,,)) 

(the support  of  v*) has dimension - f ( ~ +  6 ) +  ( ,  +6) .  
This program,  simple in its main lines, requires considerable technical 

work. We will construct  m* as limit of  a sequence of approximated  
measures m,,: this construction is inspired by the classical construct ion of 
the Gibbs measures. Moreover,  as m* is not a priori a nice measure (e.g., 
it might be noninvariant) ,  we will introduce an auxiliary equivalent 
measure with good ergodic properties to work with. Courage! 

2. UPPER BOUND 

Let 

d) = Ix such that lim S(~ + 
L 

log[ IM(x,,) �9 - �9 M(xo)ul /2  Ix~ ' +"1]  - a +  d} 

(l(xo) + .. .  + l(x,,)) 

and let pS(o:+6)  be its projection on [0, 1]. We can state the following 
result. 

Theorem 2.1.  For  I~1 sufficiently small 

HD(pS(o~ + 6)) = -f(o~ + 6) + (o~ + 6) 

We start by proving an upper  bound to the Hausdorf f  dimension. Recall 
that the function f l -o F(fl)  and its Legendre t ransform o ~ f ( o ~ + 6 )  are 
defined for fl, and then for ~, near zero (cf. Part  I). 

Lemma 2.2. Upper Bound. For  loci sufficiently small 

Proof. Let 

S,,(~ + & ~2, ) 

HD(pS(or + 6)) <. - f (or  + 6) + (or + 6) 

= ~Xo"  . x ,  such that  log [M(c, ,) . . .  M(xo)u[ 2~.,-o+ ... +x,) e ( (~  (~+6)cx2+e') 

and (l(xo) + .. .  + l(x,,)) ~ (or 2 - e', or + e ' )} 
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and  cr e Q(k,  m) = { k 2 - " ' }  k~z  . . . .  u- Let  p(S,,Ox + ,5, cx,.., e') be its p ro j ec t i on  
on  the x axis. 

W e  cons ide r  the p - H a u s d o r f f  mea su re  of  pS,,Ox + '5, ~2, e'). W e  have  
first 

HDMp.,(pS,,(o~ + '5, ~2, e') ) 

= inf  y" [ U,-[ o 
{ coverings UI of size 2n% < c } 

because  we can  cover  pS,,(o~ + '5, ~2, e ' )  wi th  

2 n a ( ( a  + 61~2 +_ e',~2 • d )  2 - n ( ~ 2  + e')(~ + 6 )  

intervals .  This  fol lows at  once because  we can  cover  S , , ( ~ + &  % ,  e ')  wi th  

2,,aU ~ +/~):~2 +_ ~'.~2 +_ e')2n Iog/~2Ox2 + c') 

in tervals  of  length  2 '"~2+"'~, then  d iv id ing  by  the amb igu i t y ,  which  is equal  
to  

2 "  I~ + e') 2n(~2 + g )(:t + c~ ) 

we have  the result .  The  signs + or  - are  to  be chosen  
wi th  or. 

I f  

-0"(  (~-t-,5) or2 + e' , or2 -t- e' ) + (0~2 --1- e' )(or -b ,5 ) 
p >  

~ 2  -[- gt  

acco rd ing ly  

as e' has  been  chosen  small ,  by  le t t ing  e be sufficiently smal l  we have,  
un i fo rmly  in n, H D  M p( pS,,( o~ + & % ,  d ) ) ~ 1. 

It  fol lows tha t  

H D M p ( l i m  inf  pS, , (e  + '5, 52, B ' ) )  
tz 

~< l im inf  HDMp(pS, , (o t  + '5, ~,_, e') ) <~ 1 

- c r ( ( ~  + J)~2 --+ d ,  ~2 + g )  + (% _+ e ' ) (~  + J )  
p >  

0[ 2 __+ g~ 
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And so we have the Hausdorf f  dimension (HD):  

H D ( l i m  inf pS,,(~x + ~, a2, e') 
tl 

- a ( (~  + ,~) ~_, + d,  ~_, + e') + (oc_, _+ e')(~ + ~) 
~< 

~ 2  -{" 8 '  

Now, we have that  

pS(oc + a) c U 
=2e Q(k,n) 

which implies that  

lim infpS,,(cc + & ~2, e ' )  
II 

HD(pS(oc + 6)) <<. sup HD(l im infpS,,(~ + ~, oc 2, e' ) ) 
ex2 ~ Q(k .n)  n 

-- O'((oc "k- 6) 0C2 "k- e', 0C2 _____ e' ) -k- (0C2 -k- e' )(0C -k- t~ ) 
= sup 

oc2~ Q(k ,n)  0~2 "~- gt  

- a ( ( ~ + ~ ) ~ , _ ,  ~,_) + %(~ + ~) 
sup + e" 
o:2~R (X 2 

We recover the equat ion for ct 2 which we studied in Section 10 of Par t  I. 
Its solution gives ~2 = ~2(c), which is the point such that  t7((~ + 6)ct2, ~2 )=  
% f ( o c +  6). 

In conclusion, we have shown that HD(pS(oc + ~) ) <<. - f (oc  + fi) + (oc + 6). 

I . e m m a  2.3.  Lower Bound. For  [oq sufficiently small 

HD(pS(oc + 6)) >>. - f ( c t  + ~) + (oc + a) 

To prove this lemma, we shall construct a measure m* and its projec- 
tion v* ( "Fros tmann  measure")  which will be supported on the set 
pS((~ + 6), a2(c)), and whose dimensions is - f ( c t  + fi) + (a + ~). We have 

HD(supp  v*) = HDpS((oc +~) ,  %(x) )  

>1 HD measure 

= - f ( c t + f i )  + ( ~ + ~ )  

Similarly, 

pS(oc + ~) = U pS( (oc + ~) 0c2 ~ pS( (~ + ~), 0c2( c) ) 
r 2 
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so that 

HD(pS(o~ + 6) >1 HDpS( (~ + ~), o~2(c) ) >i HDv* = -f(o~ + ~) + (~ + 6) 

3. STEPS OF THE C O N S T R U C T I O N  OF v* 

3.1. The " A p p r o x i m a t e "  Measure  m .  

Choose fl and F near zero. Consider the sequence m,, of approximated 
measures, defined on X and supported on the set of the sequences of 
X = N  N, X=XoXt . . . x~ . . . ,  which coincide for i>n,  i.e., such that 
x~>, - -2 ;> , ,  where 2i>,, is a arbitrarily chosen sequence (e.g., the sequence 
0, 0, 0,...): 

m,,(XoX, ... x,,) = (M(x~ M(xl)-..2 "~ +''' ...M(x")(v"++~, 1).'~ 

x ~,r~xo+x,+ ... +~"~n(XoX,... X,) 6(Xo ..... X,, O) 

fM(xo) M ( X l ) "  ._ M(x,)(v,  + 1)) # 
,, 

x yf(.,-o+ x, +... +'~")n(x, xl ... x,)  t 
1 

) 

and 

0 if x , ,+150  
m,,(Xo.. .x,+ i) = m,(Xo.. ,  x,)  otherwise 

3.2. Convergence  of m .  

We shall prove the existence of the limit measure m* by an argument 
which is usual in Gibbs measure theory, that is, the convergence of condi- 
tional measures of m,,. The contraction properties of matrices M (Part I) 
allows us to show explicitly this convergence. 

Since the configuration space X is not compact, we will also need a 
property which Mate that the measures m, are completely determined by 
the values they take on compact subsets of X. 

Recall that a family of measures p ,  is "tight" if u > 0 it is possible to 
find a compact set X~ each such p(X/X , )>  1 - e  for all n, and that a tight 
family of probability measures on a locally compact and separated space is 
relatively compact, c15) 

822/82/I-2-26 
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L e m m a  3.1. For Ifl[ and F sufficiently small the family {m,} is 
tight. 

Proof. Choose X, = {sequences ~ s.t. Vi a~<~p}, where p is an integer 
(huge). We check that uniformly in n 

m,,({x: x i > p V i =  1 ..... n } ) < t  

We have, if fl is positive, 

m,,({ x: xi> p} ) 

E : Is'd . . . . . . . .  

.,o ........... ,>/, \2"~ ....... J \ 2 J n,, 
. . . . . . . .  

~<D. Z ~ ........ ,/ \ 2 J 2~-"0 + ....... ' 
A. 0 . . .  X n , X i  > p 

-,'o >: \2"~ 2--,'o 

.x" l # I--: Fxl 
X y' ~ - -  

x.. .  ~ \2""./ \ 2 J 

where C, is normalization constant (smaller than 2"), D,, comes from the 
"factorization" of the product of matrices and is smaller than 2"C,,, and E,  
a term bounded by E" for some E. 

If fl < 0 and if fl and F are small, we similarly have 

m,,(X,)<A p" for A < I  

Then Ve positive, 3p--p(e)  such that uniformly in n we have m,(X~)< ~. 

R e m a r k .  The family {m,(fl, F)} is actually tight for fl ~ ( - 1 ,  ~ ) .  
Since the m,, are a tight family of probability measures on X locally 

compact and separated, there exists a subsequence m,,, of measures weakly 
converging to some limit probability m: j f dm,,, ~ ~ f dm V continuous 
function f~ ~s 

We now show the convergence of the conditional measures of m,. This 
provides the relation that any limit measure/t  must satisfy (in terms of its 
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explicit expression via its conditional measures). Moreover, we show that 
a measure m which satisfies such a relation is necessarily unique. It follows 
that any converging subsequence m,,~ converges to the same limit; therefore 
the whole sequence does converge. Here we go! 

Let 

a cylinder. 
Let us first show that 

c--(x~ ::: 

3 lira m^,(Xo'''XkIxk+I"''XN}=m(XO'''XkIXk+I"'') 
g ~ ,:.r. 

We have 

I ? ' I N ( X o ' ' '  X k  [ X k  + I ' ' "  X N )  

n l N ( X O ' '  " X k X k  + I " '"  X N )  

E.x" 0 ...... ~ n]N(Xot  "''-Y'k-J X k + l  " ' "  X N )  

---- [M(xo) M(xl)"" M(xk)'" M(xN) IAN+ I [ f l ~ ( X 0  " ' '  X n ) )/F('~c0 + " "  +xn )  

• { L... 
-,~, -,-i. 

�9 ' + .x~,)} - 1 
• ~ ( X ~ ) ' " "  X t n ) 7  F['~'0 + " '" 

where we define uu+l =l imM_ ~ M(xu+1)'.. M(XN+M)U, /A being any vec- 
tor of S. This definition is legitimate, because we know (Part I) that 
•(SNU, SNV) <~pN6(u, V) with p < 1 if M #  (ll0) and otherwise, if SN is the 
product of N matrices (~o) and u, v, are, respectively, equal to (~),~ (~) (this 
being the case where the least contraction arcs on the farthest vectors of the 
support), then Su- -  (~o) and 

d(SNu, S^,v)=d((NI+I),(;))~O when N ~ o o  

Then the limit v~hich defines uN+t exists independently of u, but it depends, 
continuously, on the sequence x; for i > N. 

Then, l imN~o~M(Xk+1) ' ' 'M(XN)UN+I~/Ak+I  and mg(Xo'''Xkl 
Xk+~''" XN) converges uniformly (in x r +  i "  ') toward its limit m(Xo'''Xkl 
Xk+~' ' ' ) ,  which gives the expression for the conditional measures of any 
weak limit m as above: 
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lim mN(Xo' ' 'Xk  I xk+, "''XN) 

IM(xo) M(Xl) . . .  M(Xk) Uk+ ]IP~(Xo ' ' '  X,) 7F(.,'O+ ..-+x.) 
= Zx ;  . . . .  ~. Im(xg)  m(x'a ) . . .  M(x'k) uk + ~l P~(x'o... x ' )  ~,n.,-; +. . .  +.~;) 

- m ( x o ' "  xk I Xk+l"")  

Therefore m(XO' ' 'XklXk+~ "'') is a continuous function of x. Since the 
family m N is tight, we have in particular that 

f r nNs (Xo ' ' 'Xk  I "~k+ 1 ' ' "  "~Ns) dmu,(X) lira 
x ~ o 5  

(because of the uniform convergence) 

I ~lim [mN,(Xo' ' '  ,'Ca I -'~k +l' '"  :~N,) -- m(xo. . ,  x~ [ -'~k+ 1"" ")] dm u,( f~ ) 

+ ) i m  ~ m(Xo '"  Xk I ,~k + ] "" ") dmN,( ~ ) 

= f m(Xo.. .  Xk [ ,~k+ I'" ") dm(f~) = m(xo . . ,  xk) = re(C) 
J 

where C is the cylinder 

3.3. Uniqueness 

Lemma 3.2. 

c(xOo5 

There exist a real, positive constant c such that 

~ I " ' ' ) ~  c- I  <m(XO' ' 'Xk  l Xk+_m..).~.C 
m ( x  0 . .. x k I .~k+  1 

Proof. We have 

m(Xo.. . Xk [ .Vk + l . . .) 
m(xo. .  . xk I .~k + 1"") 

~" IM(xo) M(x, ) . . .M(Xk)~k ,+ ,IP~Z(Xo -.. x , )y  F''~ + "" +x., -~ 
: ~ f l  , , F( x~ + l:E.,-; ..... i. IM(x ; )  m(x ' l ) . . .  M(Xk)Uk+,I ~(Xo'' "X,,)~' "'" +";')J 

X ~- IM(Xo) M(xl). . .M(Xk)~k+llp~(Xo.. .X,)?r(.~'o+.. .+x.) +.~.;)} - 1 
~E.,.; ...... ~ IM(x ; )  M(x ' , ) . . .  M(x'kI~k + l l % ( x ; . . ,  x ' I y  nx ;§  " 

where, as above, iik+, = limN~ ~ M(2k +~)... M(2N)U. 
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We study first the quotient 

IM(xo) M(x~) . . .  M(x~)~k + ~[~n(xo '"" X.)? F~'~~ "'" +"") 
IM(xo) M ( x ~ ) . . .  M(xk)fit` + ~ f  n(Xo. . ,  x,,)) 'F('`"§ "" + ~"~ 

I M(xo) M ( x t ) . . .  M(xt,) at̀  + 1l'~ 

IM(xo) M(x l )  . . .  M(xk)  ~k + l[p 

Let ~o = M(xo) . . .  M(xt, fit,+ i. 
This quotient can be bounded in terms of  the distance between the 

vectors rio and t} e S [z /4 ,  g/2] :  It~o[/[~o[ = 1 + ?J(~o, ~o), where ?~ is a con- 
stant (el. Par t  1). Therefore this quotient can be bounded above by 2 and 
below by 1/2. 

Similarly, since 

j \bf l  Z ~ b ~  j bj 

we have that the quotient R, 

R = ~''~; ...... 'k [M(x'o) M(x'l) �9 �9 - M(x~) fit`+ l[Pn(x'o .. .  x;,)y Ft'; + . . . . . .  " +~;,) 

E.~'o ..... ", [M(x'o} M(x ' t ) . .  M(x'k) ~k + l f n ( x ~ . - ,  x',)?Ft.,-/,+ ... +.,-;,~ 

is bounded above and below by 

inf inf [M(xo) M ( x l ) . . . M ( x k )  ~tk+ll tl 
t` r,~.+,.r,~.+, JM(xo) M ( x I ) . . -  M(xt`) ~k + ~ f  

<~ R ~< sup 
k 

IM(xo) M(x l )  "" M(xa.) ~k+ I f 
sup }M(xo) M ( x , ) . . .  M(Xk) ~ k + l f  ffk+ I ,  ~/ . '+ I 

Therefore we can choose c = 4 in the lemma. 

Let us show the uniqueness. 

Proposition 3,3.  Let m ( x o . . . x k  [ xk§ ~.. ,) be a family of functions 
satisfying 

c -  ~ ~< rn(Xo-..xk I-~k + ~ "" ') ~<c 

uniformly in k. Then there exists at most one measure m such that 
m ( x o . . . x k l x ~ + ~ . . . )  is the family of conditional measures of m. 
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Proof. Let m and m~ be two probability measures with conditional 
measures m(xo . . . x , [ x ,+ l  ...). We repeat the classical argument ~17~ to 
show that m is absolutely continuous with respect to m~ with Radon- 
Nikodym derivative h(x) bounded above and below by a constant. Then, 
since m and nh have the same conditional measures, h(x) depends only on 
conditioning, and finally h(x) is a constant equal to 1. 

We can write, V cylinder 

C 0 
(X 0 

that 

m(xo.., x,) 

= ~ m(xo.., x,) m~ (~) 

=f f ,,,(xo .-. 

: f ml, , f 

:: 

2 , +  ~ - . )  r e ( i )  

-x ,  12 ,+1"" )  

m(xo.., x ,  15:,+....) 
ml(xo..-.Vk I .ff~.+ 1 ...) 

~C f F/ll(R ) .  f nl(X)nll(NO...Xkl.~k+ 1 ..,) 

=el  ml(x)ml(xo'"Xk ].~:k+l'") ~frn(x) 

= cm~(xo.., x,) 

Then, for any cylinder 

C 0 . . .  k 

we have, exchanging the roles of m and m~, 

c-~ ~ m(xo. . .x~)  ~ c  
ml(xo . . ,  xk) 

Then for any Borel set, d in (x )=h(x )dml (x )  with c -1 < h ( x ) < c .  
By definition of conditional measure, the density h depends only on 

coordinates >k.  I fh  were not a constant, h q would be also a density, con- 
tradicting that c -  1 < h < c. 
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3 .4 .  I n v a r i a n c e  

We have, V cylinder 

that 

m(xo.-, x~) 

C 
0 - '-  

(xo 5 

= y~ m(xo. . .Xk I .%+, " ) dm(;~) 

IM(xo) M ( x l ) , . .  M(Xk)  Uk + l l/~rC(Xo .-. X n ) )  ) F ( x o +  ~- f-~o" "-~k ^ -.- +xn) 

x [  ~ IM(x'o) M(x ' l )  "' +,[P �9 .' M(Xk) Uk 
�9 . " . . . . . "  x 

1 -l} t ,  F ( X ' o +  . . .  +.,,';,) din(2) x ~(x;...x,,jy 

The translated measure rP'm of the same cylinder 

c-- (~~ ~,9 
is equal to the measure m of the cylinder 

~,c~(;o ::: ~2 p) 
which is 

f am(.~) 2 
2 - p . . . . % 2 1 . . .  2N-  �9 �9 

x { IM(2_v. .  ") M ( 2 _  I) M ( x o ) " "  M(xk)t~k + 1[ PrC(Xo... X,,) ~(.,o +... +-,',) 

x I ~ [M(2_p)-. M ( 2 _ , ) M ( x o )  "' ~ I p �9 ' " ' 'M(Xk)Uk+1 
�9 d . . .  _ .,. x 

X ~ ( . ' ~ . ' ~ - . ,  .y:/))~F{x~ + .--+x'n) ] - - l )  
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So we introduce a new measure fi on Z, by giving its condit ional measures: 

f t ( X _ k ' "  Xk I :~j, j > k , s  j < - k  ) 

(~t-(k+ l), M ( X _ k . . .  ) . . .  M ( x k ) # k +  l)arc(x0 ' ' '  I x,,)~ F(''~ + "'" +x,) 

Y'.x'~ ..... '~ ( ffk + ,, M(X'_k)  . . . M(x'~) s + l )an(x 'o . . .  x',,)y F('~ ' +";,) 

By the same arguments  as in Proposi t ion 3.3, there exists a unique measure 
fi possessing the above conditional measures. In particular,  since the 
expression giving these conditional measures is clearly stationary,  the 
measure rfi has the same conditional measures as ft. The measure fi is 
therefore r invariant. 

Similarly, we can prove that  the restriction of fi to Z § which we 
denote by fi +, and which is unique and invariant, is equivalent to m. 

We have shown the following result. 

Proposition 3.4.  For  all fl, F sufficiently small, there exists a 
unique invariant measure fi § on (/2 +, r) absolutely equivalent to rap. F. 

3.5. Ergodicity 

As in the classical case, we show the ergodicity of fi+ by the same 
arguments  which prove its unicity. Indeed, as in the classical case, it is easy 
to show a stronger property:  

Proposition3.5.1'71 The dynamical  system (f2, r, fi +) is a K 
system. 

C Proof.. Let B(ov)~§ = A , ~ N B ( A C ) ~ + ,  where B(A , , )~ .  is the f i+-com-  
pletion of c B(A, , ) ,  the a-algebra generated by the cylinders which do not 
depend on [ - n , n ] .  It is sufficient to observe that  B(oo)~7+ is a trivial 
a-algebra,  i.e., that  any B(oo)~+-measurable function f is a lmost  every- 
where constant. Then f is necessarily trivial, and the system is a K system. 

3.6. Limit Theorems 

Recall that  m is the weak limit of  the m,  (Section 3.1 ), which is not a 
priori an invariant measure,  and that  p + is invariant ergodic and equiv- 
alent to m. We shall write the exponent,  the entropy, etc., of  rn k because 
only they are explicit, in the form of suitable sums and we show that  these 
sums have the same limit behavior  as the ergodic sums of p + 

By the ergodic theorem, we have p + almost  everywhere the following 
limits: 
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lim 1 log y.,-o+ ... +.,-,, ___, 22 = 0c2(c) 
n ~  ! I  

1 
- ( l ( x o )  + . . .  l ( x , , ) )  ~ o~ 2 
I I  

1 IM(xo) '  " M ( x , , ) l  
- log  , ot~(ot + 6) 11 Tx0+ . . . x . )  - 

because the x; are distributed according to m, that is, according to p+,  
which is ergodic, and these expressions are ergodic sums. 

3.7.  E x p o n e n t  

Define the exponent 22(k) by 

1 
22(k)=~ ~ mk(xo...xk) logy ''~ 

x o  �9 ' ' X k  

L e m m a  3.6. We have 

lim 22(k) = 22 

Proof. Consider the sum 

ks 
- xi dmk 
k -Q I o 

Fix an index i and consider the integral 

Ia x~ dmk 

Choose p large enough that, uniformly in k, 

f xi dmk <<. e(p), f x~ dmk <~ e(p) 
XO " �9 " A'k > p .vO " " " X k  > p 

(cf. Lemma 3.1 ). 
We claim that ~ xi dmk -'~ ~ Xi dm when k ~ m. Compare the integrals 

m(xi) and mk(Xi). We can decompose, keeping x,. fixed, the measure mk 
according to its conditional measures (of x; given C2/xs): 
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Ia i . , ,  c l i n k ( x )  

f dmk(Xo'"Xi--l,Xi+t'''Xk " "  
as- ~ Ix# 

= Y'. x , m k ( X o . . ,  x ; _ ,  Ix;I x , + ,  . . .  x k . . - )  
-\'i 

dmk(xo_L L' x i _  L' x i +  i L'" x,~. �9 - ._) 
ai.,., d m ( x o .  . . x j _  I ,  x ~ +  l " ' "  x k .  . .) dm(.x 'o  -.  - x~_ i ,  x,-+ l " "  Xk  "" ") 

•  m k ( X o ' ' ' X , _ ~  IX,I X ,+  , . . .  X k ' '  ") m ( x o . . -  : g _ ,  Ix,I x , + ,  � 9  Xk ' "  ") 
x, m ( X o . . . x , _ ~  Ix,I  : < , + , ' ' ' X k ' ' ' )  

Consider first the quotient 

m k ( : ' o ' " X i _ ,  IX;I X , + , - - - X k ' ' ' )  
m ( x o . . ,  x,_~ Ix,I x~+, " " X k ' ' ' )  

or, more explicitly, 

( IM(xo)  M ( x i ) - - .  M(xl)  M(xi+ i ) " "  M(xk)  ffk + i i  p 

• ~t (Xo. . .  I :<'k)r ~<'~ " +"~' 

• f~ iM/. .<o/~/x,)~r 
k.v i. 

X,(,~-O...Xk),Flxo+ - § -1) 

x ( l M ( x o )  �9 �9 �9 M(xi_ l) M(xi) M(xi+ l ) " "  M(Xk) ffk+ lift 
• 7i(x ~ . .. Xk)TF~xo+ ... +Xk~ 

• I~  IMIxol MI,<,_,I ~l,,:~ MI.,-,_,/M~.,-~,~+,l,' 
k-x~. 

• 71"(.Y 0 . ..Xk)~ Flxo+ . .  +.,-k))-- l) -1 

Consider now the quotient of the numerators: 

IM(xo) M ( x i ) " " "  M(xi) M(xi+ 1 ) " "  M(xk) Ok+ 118ff(Xo "'" Xk)y FIx~ "'" + xk) 

• [ ] M ( X o ) " "  M(x i - I )  M(xi) M(x,+ I ) " "  M(xk) ~tk+ 1['6' 

• n(Xo-. .  Xk)y v'~ + ' + x~.~] - I  = A 
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If k - - i  is large, we have the quotient of two vectors which which are very 
near, and as [vll/lvzl ~ 1 + c x 6 ( v l ,  v2), we can bound A above and below: 

k C i  1 - c O ( ( k l _ i ) , ( k _ l i + l ) )  

1 
< ~ A < ~ l + c 6 ( ( k l _ i ) , ( k _ i + l ) )  

C 
~ l + - -  

k - i  

where c is a constant.  
For  the denominators ,  use that  

infaJ ~< Z k  ak ~< a/ sup - -  
j bj L bk j bj 

to get similar bounds and finally 

(1 m k ( X o ' "  x i - 1  IxA x , §  l . . .  x k . . . )  

m ( x o . . ,  x i _ l  Ixil xe+ l . . .  x ~ . . . )  

We also have to bound the quotient 

dmk(xo.- ,  x i_  j, xi+ t "'" xk--  .) 

dm(xo.  . . x i_  1, xi+ l "'" xk . . .) 

= [ ~  I M ( x ~  

x • ( X o ' "  x k ) y  F~-'o+ ' +-'*~] 

[Y', I m ( x o ) " "  m ( x i _ l )  m(x i )  M(xi+ X 
k 

Xio 

• 7r(Xo... xk)y F~'-~ + "'" +"~J] -1 

�9 M(xk)  ftk+ ii p 

) ' " M ( x k )  ak+ll p 

This quotient R can be analogously bounded by (1--c/(k-i))<~R<~ 
(1 + c / ( k - i ) ) .  
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But 

Finally, 

c 3 ~o,,,.dm~x,m(...IxA...>+~ai.,.dm~[(1----s - l ]  

<~ f xidmk 

x, " . _ 1 ]  ~fQ/xdm2 Xim(" Ixii'")'t-f~/vidm~_vixi[(1 c3  

1 k . 

( because 

1 k - i  1 1 f l - i l k  dx 
--s ,~o k -  i k J/k 1 -  x 

and Ix , -dm is a finite quantity).  Similarly 

- - ~ 0  if k ~  

the other terms containing 
powers of  l / k - i )  go to zero if k ~ ~ ,  and this proves the claim. 

Recall that  there exists an ergodic measure absolutely equivalent to m, 
hm- f i+ .  Therefore, in order to prove that ) .2(k)--~ )'2 when k ~ ~ ,  it suf- 
rices to show that  

Y. x,h dm 
i=0 

have the same limit behavior. 

l L k - l  
and -~ Z x i dm 

i=0 

To show this fact, it is enough to observe that  by the ergodicity of hm, 
and since xiEL2(h din), we have 

1 k l l f  k l  ~f ~. x, dm=~ ~ (.,'oO~')lh-')hdm 
.(2 i = O  i = O  

~ f xoh dm f h - J h &n = f xoh &n 

and 

l kl f 
i=O i=O 
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3.8. Entropy 

Let pro> be the part i t ion (by cylinders) { C~ .,-o~ N. We denote p(o> = p. 
Here p , o  is the part i t ion whose a toms are the cylinders { 0 ..... Cxo ....... } .,-~ ~ N' The 
part i t ion P is countable,  it has finite entropy,  and it is generating. By the 
Sinai theorem, if n --+ ~ ,  

1 
- H p + ( P v  T - 1 P v  ... v T-"P)--*h(fi  +) 
n 

where 

H~,(+ T-~P)=H~,(P(")) = ~ I.t(A)loglt(A) 
\ 0 A ~ pin) 

Similarly, for the measure mk we have 

1 1 
7 H,,,~(P(k))=-r H . . ( P  v T-1P v ... v T - IP)  
tc K 

1 
= - - ~  ~. mk(A)lOgmk(A) 

A ~ p(k) 

Proposition 3.7. We have 

1 
H.,* ( P~kl) ~ h(fi + ) as k ~  

Proof. Compare  first H.,, and H.,. Arguments  analogous to those of 
Lemma3 .6  show that  (1/k)H., , (P ~k~) has the same limit behavior  as 
( l /k )  H,,(P'k)). 

Let p~k) the parti t ion by a toms Xo. . . x  k. We have 

1 
H"'k(PIk)) = - -k  fa dmk(x) log mk(P Ik)) 

1 
fa dmk(x) log mk(Xo '' " Xk) 

k 

--~.i~_n~ dmk(X) lOgmk(Xi [ Xi+l "" "Xk) 

1 ~ fa dmk(2O " 2 i _ , , 2 i + ,  " '2k ' ' ' )  
k /~., i = O  

- - ~  mk(.%" "''%--1 IX,I 7Ci+~ "" " & - ' '  " ) lOgmk(X,  I :~,-+ l ."  "-Vk) 
Ni 
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Again, choose i and write 

- ~ ' m ( . - - I . . . )  1 - ~ _ i  logm(. . . [ - - . )  1--~_-i_i 
Ni 

m~(... I"') --s'mk('"J"-) m(-.. I'") log m(... 1...) 
~< ~ m(..-I...) m(..-I...) 

( c )  
~ < - Z m ( ' " l ' " )  1-ff-~_ i logm( . . . [ . . . )  1-k~_t.  

Xi 

Then 

~o dm(x) logm T-~P ~~ T-iP ~~ +r(k) H"'k(P(k)) = --k i= ~ j=~ 

The first term goes to k(m) and r(k) goes to zero when k--, oo. 
We have only to show that h(m)=h(hm), where hm=fi + is the 

ergodic measure equivalent to m. We have the following lemma. 

k e m m a  3.8. Let P be a finite entropy partition. Then there exists a 
constant C independent of P such that 

[H,,,,,(P)- H,,,(P)I ~< C 

Proof. Let dlt = h din. Write 

[H,,,- HpI : f dP f dm dp m(P(x)) I.t(P(x)) 
p(P(x)) 

dp dm. p(P(x)) m(P(x)) t 
- f  f ,og m.'Ix) l 

' 1 m(P(x)) 
= J" dp am og p(P(x)) <~ log Ilhl[ ,=~ 

It follows that 

1 ~ 1  C 
} H,,,(P'*')-~ H,.,,(P ) <~-ff 

so we conclude that (l/k)H,,,k(P{k}), which has the same limit behavior as 
(l/k) H,,,(P{k)), also has the same limit behavior as (l/k)Hh,,,(Pa'}), which 
goes to h(fi+). 
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3.9.  T h e  C o n d i t i o n a l  E n t r o p y  h I 

0 � 9  n Let P(") be the partition by cylinders C,. 0 ........ . Let P,, be the partition 
of the square [0, 1 ] x [0, 1 ] corresponding to PI"I. Let Q,, be the "vertical" 
partition P,, x [0, 1 ]. Define the conditional entropy of ink, h~(mk), by 

= I \ nlk(Qk) /I 

_ l _ i  dmk(Xo'''Xk'-')log IM(Xo)"'M(Xk)Uk+,I 

We show that h~(mk) has a limit when k-+ ~ ,  which we denote "lim," and 
that this "lim" is greater than or equal to the conditional entropy of fi+, 
h~(~+) 

More precisely, we show that h~(mk) has the same limit, for k ~  oo, as 
HO+(Pkl Qk), this limit being an upper bound for h~(fi+). 

L e m m a  3.9. We have 

lim H,+(P,, I Q,,)= lim hi(m,,) 

Proof. This is again the same argument. Write 

1 
h,,,k(P,, I Q,,) =-s f dmk(x) log IM(xo)... M(Xk)Uk[ 

l~.fdrnk(x) log [M(xi) ui+ ,] 
k lu,+,l i = 0  

where ui+l = M ( x i + l ) . . .  M(Xk)Uk, and lu , I  = 1. 
By the same arguments, this quantity has the same limit behavior as 

1 k 
-k i~o f dl,l(x) log IM(xi)ui+,l 

1 k 

= k i l o  ~ dm(x)Fk(r/x) --* f dfi + F(x) ="l im" 

where F(x) = log ]M(xo)ul I. 
We have the following proposition (m being the weak limit of the m,,). 

P r o p o s i t i o n  3.10. We have 

hl(fi +) .N< lim hi(ink) 
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Proof.. Let P,, be fixed; there exists a vertical partition Q.,(n), with 
I Qm.,~l-+ 0 when n ~ oo, such that the limit h~ is attained for the partition 
P ,  [ Q.,(.,>: 

h,(fi+)= lim logfi+=(P,,)= lim -1Ha.(P, ,  I Om+.>) 

where fi'= is the vertical conditional measure of fi+. We have that 
Q.,,, , , , ,nP,,~_P,,.  Then H , + ( P .  I O.,,,,,,~)<H,+(P,, I Q,,) because ~.,,,,, raf- 
fines Q,,, Q .  being the partition P.  • [ O, 1 ]. 

Now, 

It follows that 

lim Hz+(P,,  I Q . ) =  lim hi(m,,)  
114  or+, n ~ oo  

hi(p+)= lim Hz+CP,, I Q.,I.I) 
/ 1 ~  0 2  

4. C O N C L U S I O N  

Set 

~< lim Hp+(P,, I Q,,)= lim h l (m.)=" l im"  
n ~ oc  n ~ ocv 

( M ( x o )  M ( x l ) " "  M ( x , ) ( v , +  i)~ p 
a ~, = ~ \ '  2x---~ +---7, . . . .,.,----7 / 

x I �9 �9 " x n  

x yF,~o+.~, + ... +x.~ n ( X o X t . . ,  x , )  

A simple identity between the partial derivatives of Gk yields 

h2(mk) -- h l ( m  k ) - 22(mk) ( --fk(o~k + 3) -- (0: k + 6)) (*) 

By Propositions 3.7 and 3.10 the limit of the 1.h.s. of (,)  satisfies 

h2(fi + ) - "lim" ~< h2(fi + ) - h l(fi + ) 

On the other hand, by Lemma 3.6 and the continuity of f 

lim 22(m,)[ --fk(OCk + 5) -- (0~, + 6)] = 22(fi + )[f(0r + 6) -- (Cr + 6)] 

Finally, by ref. 14 we know that the transverse dynamics relative to the 
two-dimensional system (s ~+, r) obeys the relation 

h2(fi + ) - h l ( f i + ) = 2 2 ( f i  +) y( f i+)  (LY) 
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where y(fi+) is the dimension of the projected measure of ~ +. Then, by 
combining these relations, we have 

,,~2(~ + ) y ( f i + ) = h 2 ( f i + ) - h l ( f i + ) > ~ h z ( f i + ) - " l i m  '' 

= 22(fi + ) [ f ( a  + g) -- (or + a) ] 

This means 

dim v*/> - f ( ~  + 6) - (~ + 6) 

since v* is equivalent to the projected measure of/~ +. 
On the other hand (cf. Section 3.6), v* is supported by pS(o~ + g, ~,_). 

This shows that actually HDpS(~ + 6, o~.) >1 - f ( c t  + 6) + (~ + 6). 
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