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On the Multifractal Analysis of Bernoulli
Convolutions. II. Dimensions
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We show how the formalism developed in a previous paper allows us to exhibit
the multifractal nature of the infinitely convolved Bernoulli measures v, for y the
golden mean. In this second part we show how the Hausdorfl dimension of the
set where the measure has a power law singularity of strength « is related to
the large-deviation function given in Part I.

KEY WORDS: Random matrices; thermodynamic formalism; Hausdorfl
dimension.

1. INTRODUCTION

1.1. The Result

Ws show in this Part IT how the formalism of our previous papers can be
applied to the multifractal analysis of the infinitely convolved Bernoulli
measure associated with the golden number y. We state that the Hausdorff
dimension f(a) of the set where the measure has a power-law singularity
of strength « can be computed from the large-deviation function f(«, /) of
Part I.

Note that f(a), while obtained as a section of a joint large-deviation
function f(a, /)- is in itself intrinsic to the dynamical system (£, f, u).
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Indeed, if the pointwise limit

log u(1(x)) _
-0 log |I{x)}

exists and is equal to « on a set B, of points x, then the limit exists and
it is the same for all subsequences of I(x), x € B,, whose diameter goes to
zero. We can then associate with B, (via the construction of a Frostmann
measure associated with G) its Hausdorff dimension f(«).

In ref. 13 we investigated the transformation of the square

= 2y if x<y, y<l1/2
Flx,y)=4"
%—y,Zy—l if x>1-y yz1p2

v, is the image of the Sinai-Ruelle-Bowen measure x via the projection p
on the x axis. Clearly F is an endomorphism of the square which possesses
two dilating directions. There are very few examples where the mathematics
of the multifractal spectrum is well understood: our model is perhaps the
first for which it has been possible to obtain a result on multifractal
analysis of an invariant measure in the presence of two interacting dilating
directions.

In ref. 13 we studied the relations between a Markov partition P, for
F and the y-adic partition of the x axis, to establish a dimension formula
for the measure v,. The measure v, of a y-adic interval is computed by
counting the rectangles of the Markov partition projecting on it. The
dimension of the measure is therefore associated with the growth of a
random product of Markov matrices. These matrices are

(1 k+1> if n=2k+2
1 k+1
M(n)= : k

(1 k+l> if n=2k+1

and M(n)= M(x,), where x,e F~"Py. If n,---n, is the coding of a y-adic
intervals, then its v,-measure equals

lM('\-n‘,) e M('\-m)l

YNy + oo+ Xy )

and its length equals /(x,,) + --- +/(x,,)) (see ref. 13 for more details).
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We denoted by ¢ the almost sure value of the local dimension. We
take the notations of Sections 9 and 10 of Part I. Recall that f<0 and
a, < 0. Recall that the function f— F(f) and its Legendre transform
o — f(a+ 6) are defined for f, and then for a, near to zero (cf. Part I). Let

1 2 2 2(.\~0+..,+xn)
S(Ot+5)={x such that lim ogl|M(x,) --- M(xo)ul/

n— o (l(,\'o)+ _|_1('\.n)) =a+5}

and let pS(a+J) be its projection on [0, 1]. In this paper we prove the
following result.

Theorem. For |«| sufficiently small,
HD(pS(a+96))= —f(a+6)+ (x+3)

We prove first an upper bound to the Hausdorff dimension. This is
done by an easy covering argument. The opposite inequality is more dif-
ficult and requires the construction of a Frostmann measure.

1.2. Constructing the Frostmann Measure m*

We shall construct the unique “Gibbs measure” m=m,  associated
with the “pressure” G, and depending also on § and F. For a suitable
choice of the parameters, m » will be supported on the set of trajectories
such that

log[ | M(x,) - M(xg)ujj2t¥0+ =+
(Hxo)+ -+ +1(x,))

~x+0

The results of Section 10, Part I, show that a good choice is f=f* and
F=F* corresponding to the wvalue o,(c) which maximizes
o((x+0)ay, as)/os.

In fact we shall consider m » as invariant measures for the shift on the
space of trajectories Xg, X|,.., X;€ N, and will interpret the large-deviation
theorem of Section 10, PartI, as an entropy/dimension formula. More
precisely, recall the Ledrappier-Young formula‘'* in two dimensions, that
is,

hz(m,,.‘F:) —hy(Mge po) = As(Mpe N Oa(Mipe o) ~ 8 (Mpu po))
where ki, A, and § are entropy, exponent, and dimension, respectively. Here
hy—hy=[fla+d)—(x+ )] aa(c), Ara=0,(c), and 3, -3, = —f(a+3J)—

{a+0). It follows that —f(a+ J) +a+ 9 is the dimension of the projected
measure of mg. ..
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We will construct in this way a measure mg. . =m* whose projection
v* is the Frostmann measure: the projection on [0, 1] of the set of trajec-
tories such that

log[|M(x,)--- M(xo)ul/(g(xo) + --- +8(x,))]

a+0

(the support of v*) has dimension —f(a+ &) + (e + 9).

This program, simple in its main lines, requires considerable technical
work. We will construct m* as limit of a sequence of approximated
measures m,,: this construction is inspired by the classical construction of
the Gibbs measures. Moreover, as m* is not « priori a nice measure (e.g.,
it might be noninvariant), we will introduce an auxiliary equivalent
measure with good ergodic properties to work with. Courage!

2. UPPER BOUND
Let

(x0)+ -+ +Xxp)
S(a+5)={x such that lim -28LIM(xn) - M(xo)ul/2 ]

i (o) + - +1(x,)) =°‘+‘5}

and let pS(x+J) be its projection on [0, 1]. We can state the following
result.

Theorem 2.1. For |a| sufficiently small
HD(pS(a+8))= —f(a+ )+ (a+ )

We start by proving an upper bound to the Hausdorff dimension. Recall
that the function f— F(f) and its Legendre transform o — f(o+9) are
defined for f, and then for o, near zero (cf. Part I).

Lemma 2.2. Upper Bound. For |a| sufficiently small
HD(pS(x+9)) < —f(a+ ) + (x +9)
Proof. Let
S (a+0,a,,¢)
|M(c,)--- M(xo)ul

2(Xo+ o +x)

= {xo ... x, such that log e((a+d)or—¢, (x+0)a,+¢')

and (A xq)+ - +H(x,))e(as—¢, a2+a’)}
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and o, € Q(k, m) ={k2™"} ke 2 men- Let p(S,(a+ 9, x5, &) be its projection
on the x axis.

We consider the p-Hausdorff measure of pS,(a+ 9, o, &'). We have
first

HDM,,.E(‘DS”((X + 5a aZa 8,))

= inf AL
}

{coverings U) of size 2" <&
< 211(12 +€')/12m7((a+6)a{1;tc'.azi 8')2 —nlay+ &' W x+J)
=
because we can cover pS, (o +9, oy, &'} with

2na(lm+r)')a;ic',1zic’) 2—lrla1+s')(:x+¢5)

intervals. This follows at once because we can cover S, (a+J, a5, &') with

2nn((1+/l)1z-_tc'.atgts’)zn logg(or +¢')

intervals of length 2"+ then dividing by the ambiguity, which is equal
to

211 logg2(as + e')2n(u3 + &N+ J)

we have the result. The signs + or — are to be chosen accordingly
with a.
If

S —o((a+8)a,+e,ar+e )+ (x, &' ) a+0)
oy té

as ¢ has been chosen small, by letting ¢ be sufficiently small we have,

uniformly in n, HDM (pS,(a+9, a,,€)) < 1.
It follows that

HDM,(lim inf pS,(a +5, o5, ))

<lim inf HDM (pS,(a + 96, 25, ")) < 1
if
> —o({a+d)a, e, arte )+ (e N +9)
o, + ¢




402 Ledrappier and Porzio
And so we have the Hausdorff dimension (HD):
HD(lim inf pS,(a+9, a,, ')

< —ollatd)a, ke, ayté) + (ot ')+ 9)
= ay+é

Now, we have that

pSla+d)c ) liminfpS,(a+3,a,,¢)

xxe Ok, n)

which implies that

HD(pS(a+6))< sup HD(liminfpS,(a+3, ay, €'))

axe QUk,n) n
— w —o({a+d)a, + &, o+ &)+ (a,+ &) a+6)
azeQ(pk,n) Ay i‘ g
—o({a+0)ay, o) +ay(a +3)
< sup +e

x1€ R oy

We recover the equation for a, which we studied in Section 10 of Part .
Its solution gives &, = a4(c), which is the point such that o({« + d)a,, a,) =
o fa+9).

In conclusion, we have shown that HD{ pS(a + 8)) < —f(ac + ) + (o + 8).

Lemma 2.3. Lower Bound. For |«| sufficiently small
HD(pS(a+90))= —f(a+ )+ (x+9)

To prove this lemma, we shall construct a measure m* and its projec-
tion v* (“Frostmann measure”) which will be supported on the set
pS((a+9), as(c)), and whose dimensions is —f(a + &) + (a + J). We have

HD(supp v¥)= HDpS((a + 3), a5(x))
= HD measure
= —f(a+0)+ (a+9)

Similarly,

pS(a+9) =) pS((a+6) ay 2 pS((x +6), as(c))

x2
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so that

HD(pS(a + ) = HDpS((a + 8), ay(¢)) = HDv* = —f(a +J) + (a + 9)

3. STEPS OF THE CONSTRUCTION OF v*

3.1. The “Approximate’”’ Measure m,

Choose f and F near zero. Consider the sequence m,, of approximated
measures, defined on X and supported on the set of the sequences of
X=NV, x=xoX,---X;---, which coincide for i>n, ie., such that
Xi>n=X;> ., Where %, , is a arbitrarily chosen sequence (e.g., the sequence
0,0,0,..):

_ _(M(xo) M(xl)”'M(xn)(vn-i-l))B
mn(loxl "'xn)— 2,\-0+x|u.+,\-,,

x pFlmtxit Xy (00X - X,) O(Xgsees Xy, 0)

{ <M(x0)M(xl)"'M(xn)(vn+l)>ﬂ
x{ X

2.\‘o+x|~~~ +Xp
7

~1
% YF(,\'0+.\'|+ +.\~,.)7z(xnx] . __x")}

and

0 i x,., #0

mixp--*X = 1
X0 Xn i) {m,,(xo'-' X,) otherwise

3.2. Convergence of m,,

We shall prove the existence of the limit measure m* by an argument
which is usual in Gibbs measure theory, that is, the convergence of condi-
tional measures of m,. The contraction properties of matrices M (Part I)
allows us to show explicitly this convergence.

Since the configuration space X is not compact, we will also need a
property which state that the measures m, are completely determined by
the values they take on compact subsets of X.

Recall that a family of measures u, is “tight” if Ve >0 it is possible to
find a compact set X, each such u(X/X,)>1—¢ for all n, and that a tight
family of probability measures on a locally compact and separated space is
relatively compact.'*’

822/82/1-2-26
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Lemma 3.1. For |f| and F sufficiently small the family {m,} is
tight.

Proof. Choose X, = {sequences ¢ s.t. Vi o,< p}, where p is an integer
(huge). We check that uniformly in n

m,({x:x;>pVi=1,..,n})<e
We have, if § is positive,

’nn({x: xi>p})

|S,,| B (Xo+ -+ Xy F
<(:n Z (2\(,4. 7'[,,
XQg---Xp  Xj>p
z ()

Y (xo+ -~ xy)F ( )
RY T SRRV
<D" <2\0+ - Xp < ) 2 0
NQ e Xp  Ni>p
X 1— \/_
<D, Py PR

k B —_ kF n
<a (o () (57) )
k>p \2 2

where C, is normalization constant (smaller than 2"), D, comes from the
“factorization” of the product of matrices and is smaller than 2”"C,, and E,
a term bounded by E” for some E.

If f<0 and if § and F are small, we similarly have

my(X,) <A™ for A<l

Then Ve positive, 3p = p(¢) such that uniformly in n we have m,(X,) <e.

Remark. The family {m,(f, F)} is actually tight for fe(—1, o).

Since the m,, are a tight family of probability measures on X locally
compact and separated, there exists a subsequence 1, of measures weakly
converging to some limit probability m: { fdm —>j fdm ¥ continuous
function £

We now show the convergence of the conditional measures of m,,. This
provides the relation that any limit measure g must satisfy (in terms of its

ny
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explicit expression via its conditional measures). Moreover, we show that
a measure m which satisfies such a relation is necessarily unique. It follows
that any converging subsequence m, converges to the same limit; therefore
the whole sequence does converge. Here we go!

Let
C=<0 k)
'\‘0 e _\’k

a cylinder.
Let us first show that

3 lim mpy(xe - Xp | Xpwr XMV =m(Xg- X | Xpep1--7)
N—= o
We have
Mp{(Xg - Xp | Ngyy o Xp)
_ Mp(Xg - XpXp 1 - Xy)
Tt MK XeXg g1 Xn)

= |M(xo) M(xy) - M(x,) - M(xp) iy oy [P (g - x, ) p oot o o)

X{ ) I1M(xo) M(XY) - M(XG) MUXgy ) M(xn) uy o al”

- -
Y

-1
x 71(.\‘;) . .\‘:,)})F('\'“+ +.\-,,)}

where we define uy ., =lim,, . . M(xy, ) - M(xy, ar)u, u being any vec-
tor of S. This definition is legitimate, because we know (PartI) that
(Syu, Syv) < pN(u, v) with p <1 if M+#(}9) and otherwise, if Sy is the
product of N matrices (,7) and u, v, are, respectively, equal to (}), () (this
being the case where the least contraction atcs on the farthest vectors of the
support), then Sy=(A}) and

| 1
5(SNu,SNv)=5<<N+1>,<N>)—>O when N-

Then the limit which defines u, , , exists independently of », but it depends,
continuously, on the sequence v, for i> N.

Then, limy_ . M(xg 1) - M(xp) Uy = Uy and mpy(xg--- x|
Xp 41 Xy) converges uniformly (in xg, ;---) toward its limit m{xq--- X, |
Xg .1 --+)» which gives the expression for the conditional measures of any
weak limit m as above:
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A}im my(Xo -+ Xp | Xpepr0-Xp)
_ M) M(xy) - MOx) e P m(xg - x,,) pPO0t
Doy 1M(x0) M(xY) - - M(x) e 1P (- x;,) pFC0 )

=m(xo- - Xp | Xpeyr ")
Therefore m(xq---Xg | X, --+) is a continuous function of x. Since the
family m,, is tight, we have in particular that

i [ (g, | fiay - Ry) di ()
5= oG

(because of the uniform convergence)

[ im [0+ xi | S+ £w) = x| Sy -] dmpg(R)
Ji

Rev10) dmN,(ﬁ)

+ lim | m(xq--- X,

§— oC

= [m(xo- x| Resr ) dm(R) = m(xo--x,) =m(C)

where C 1s the cylinder

3.3. Uniqueness
Lemma 3.2. There exist a real, positive constant ¢ such that

m(xo- X | X qr o)
~ =
m(xo---Xp | Xepq o)

—1
<c

Proof. We have

m(xg---xp | Kppro0)
m(xo"'xkl":ék-f-l"')
={ |M(xo) M(x1) - M(x,) 1y 11 |*7(xq - x, ) yFxo -+ }
Yoo | M(x0) M(xh) -+ M(X}) gy [P (G - xp ) pTo 450
|M(x0) M(x,) - M(x,) iy o )P (g - X, )y o0t o+ !
{z [M(xt) M(x}) - M(x}) itk + 1P r(xp - x,) pFo+ - +-"'n’}

where, as above, i, =limy_, o M(X,,,) - M(Z))u.
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We study first the quotient
|M(xg) M(x1) - - MUx,) g o[ 7(3xg - X, )P0 T o
IM(xq) M(x\} - - Mx )ty i [P7(xq - x, ) pFOOF )

_ IM(x0) M(x)) -+ M(xy 5+
B IM(xq) M(x))--- M(x,) ﬁk+llp

Let fg=M(xy) - M(x, 8, ,-

This quotient can be bounded in terms of the distance between the
vectors il and G e S[n/4, n/2]): |dol/|fol = 1 + pd(iiy, ty), Where y is a con-
stant (cf. Part I). Therefore this quotient can be bounded above by 2 and
below by 1/2.

Similarly, since

. a. n_ a
mf(—’) <SS Fcsup (
i bj k=0 b k i
we have that the quotient R,

| g | Mx0) M) MOx) B o (g -, )y 70T o
g M) MOXY) - MOx) B+ 1P (g x,)yTooe

is bounded above and below by

inf  inf [M(xo) M(xy) - MUx,) By 0)*
ko By fiEy) lM(XO)M(XI)"'M(Xk) ak+!ll3

[ M(xq) M(x,)--- M(x,) §k+,)ﬂ
<R<su su =
L IM(xe) M(x)) - M(X,) o I

Therefore we can choose ¢ =4 in the lemma.
Let us show the uniqueness.

Proposition 3.3. Let m(xq---x; | x4, ) be a family of functions
satisfying

_lsm(-\'o"‘xkl«\:'k-»l"')
M(Xq-Xp | X yr o)

<¢

uniformly in k. Then there exists at most one measure m such that
m(xg-- X | Xy ---) is the family of conditional measures of m.
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Proof. Let m and m, be two probability measures with conditional
measures m(Xg--- X | Xz 4 ---). We repeat the classical argument''” to
show that m is absolutely continuous with respect to m, with Radon-
Nikodym derivative h(x) bounded above and below by a constant. Then,
since m and m, have the same conditional measures, #(x) depends only on
conditioning, and finally A(x) is a constant equal to 1.

We can write, VY cylinder

C=<0 k)
XO e xl\‘
that

m(xg---Xg)

= j m(xg .- X ) m(X)

=f_ m, (%) j (g X | fppy - ) MR)

X
m(xg- - X | Sy 00)

m(xg - X | Xy o)

m(Xo- - Xp | Xpepy o)

=£ m(X) J m(X)
<e [ m®) [ mR) x| Begr o)

=cJ (X)) my(xg- X | By )J m(X)
x ®
=cm(xg- - Xg)

Then, for any cylinder

0 ... k
(N

’\70 e 'Y/\'

we have, exchanging the roles of m and m,,

M{XNg- X
_|< ( [\] A)

S <c
my(xg- - X))

Then for any Borel set, dm(x) = h(x) dm,(x) with ¢! <h(x) <c.

By definition of conditional measure, the density /2 depends only on
coordinates >k. If & were not a constant, 79 would be also a density, con-
tradicting that c~! <h <.
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3.4. Invariance

We have, V cylinder

that

m(Xg---X,)

= [ mxo X | Ry ) dm(R)

{|M(xc) M(xy) - M(x,) e | r(xg - 2, ) p oot o)

RVIERRSY

x| B M) MO M) P

—1
(e o]

The translated measure t”"m of the same cylinder

C=<0 k>
xo PR xk

is equal to the measure »1 of the cylinder

-L-—PC=<p k+p>

xo e xk

which is

f dm{ ) Z

Lope XLy RN

x {lM(_\"_,, Y MR ) M(xg) - M(X ) | Pr(xg - x,)p TRt o )

x[ S IM(E,) - MR ) MUxh) - M(x}) |

- -
Yo N

—~1
" 1\ FXg+ oo X
X77-'(-\0"'xn)7 o \"J:| }
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So we introduce a new measure g on Z, by giving its conditional measures:

/‘(x—k"'-xkl“‘ej’j>k’fj’j< _k)

KOy, Mx - Yoo M)l o DPnlxg - | x, )yt ot
2oy Slpegys M(X'_p) - - - M(x},) T w1 P (- xp ) pfoos )

By the same arguments as in Proposition 3.3, there exists a unique measure
[ possessing the above conditional measures. In particular, since the
expression giving these conditional measures is clearly stationary, the
measure 74 has the same conditional measures as 4. The measure g is
therefore t invariant.

Similarly, we can prove that the restriction of g to Z*, which we
denote by 4%, and which is unique and invariant, is equivalent to m.

We have shown the following result.

Proposition 3.4. For all f, F sufficiently small, there exists a
unique invariant measure 4 * on (2%, r) absolutely equivalent to my ..

3.5. Ergodicity

As in the classical case, we show the ergodicity of Z* by the same
arguments which prove its unicity. Indeed, as in the classical case, it is easy
to show a stronger property:

Proposition 3.5."'” The dynamical system (Q,7,7%) is a K
system.

Proof. Let B(0);+ =\,en B(AS);+, Where B(AS);+ is the ji*-com-
pletion of B(AS), the o-algebra generated by the cylinders which do not
depend on [ —n,n]. It is sufficient to observe that B(co),+ is a trivial
o-algebra, ie., that any B(o0);+-measurable function f is almost every-
where constant. Then f is necessarily trivial, and the system is a K system.

3.6. Limit Theorems

Recall that m is the weak limit of the m,, (Section 3.1), which is not «
priori an invariant measure, and that 4* is invariant ergodic and equiv-
alent to m. We shall write the exponent, the entropy, etc., of m, because
only they are explicit, in the form of suitable sums and we show that these
sums have the same limit behavior as the ergodic sums of ™.

By the ergodic theorem, we have ji* almost everywhere the following
limits:
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.1 .
lim —log y™* "% 1, =wa,y(c)
n—»o N

1
= (lxo) + -+ Ux,)) = &
n

1. IM(xo) - M(x,)]
;; log 2(.\'0+ cor X))

— ay(a+3)

because the x; are distributed according to m, that is, according to g™,
which is ergodic, and these expressions are ergodic sums.

3.7. Exponent
Define the exponent A,(k) by

1
Tolky =y X malxerxi) log ot e

Y REEEYY

Lemma 3.6. We have

k— o

Proof. Consider the sum
1 k-1
ZL; ‘Z:O x;dmy,
Fix an index i and consider the integral
J X;dm,
Q
Choose p large enough that, uniformly in k,

J . x;dm, <e(p), J x2dm,<e(p)

XQ e Xg>p NG Xk p

(cf. Lemma 3.1).

We claim that { x; dm, — | x,dm when k — co. Compare the integrals
m(x;) and m,(x,;). We can decompose, keeping x; fixed, the measure m,
according to its conditional measures (of x; given £/x,):
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J- dm(x)
/x;

= AM(Xg - Xi_ 1y Xip1 - Xpoor)
£2/x;

=Z.\‘,mk(x0---xi_1 |x] Xipy-e o Xpe)

dmf\'('\'()"'xi—hx"&-!"'xk"')
= y ‘ dn7(x0"'xi—laxi+l"'xk"')
o AM(Xg X,y Xipq - Xpeerr)

L

Consider first the quotient

M Xo - Xy 1X] Xy oo Xg o)

m(\'o i—llxil-\‘i-q-l"'xk"')

ny(Xg Xy X Xipe oo xg )
m(Xo X,y X Xy X

or, more explicitly,

<|M(-\‘o} M(x;) - M(x;) M(x; 1) M(xp) g )"

X ﬂ(xo- .. | xk)yF(.vo+ o x)

x{z IM(xq) M(x,)--- M(x;_\) M(x!) M(x;, ) M(xp) i, . ,|*

o
Ay

—1
XA xg - X ) pFlot +m} >

x (IM(XO) e MO0 M(x) M(X ) - M) g

X(Xg - - X ) pFot o+

X{Z|M(-\'o)' M(x;_ ) M(x7) M(x; ) - M(xp) g 4o |”

K
i

—1\ —1
- . Flxo+ - 4+
X”('\o"'-\k))’ No \x)} >

Consider now the quotient of the numerators:
|M(x0) M(x\) -+ M(x;) M(x; ) - M(x) g [P - X )y P00
X [|M(xq) - M(x;_1) M(x;) M(x;,y)--- M(x;) ﬁk+1|ﬂ

X 7[(.\'0~. .xk))IF'\'“'*' +A'k)] -1 =4

M(Xg- - Xi X Xy X e
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If k—i is large, we have the quotient of two vectors which which are very
near, and as |v,|/|vs| ~ 1+ ¢xd(v,, v,), we can bound 4 above and below:

- —~l-a <<k1_1> <k—1i+l>>
cacira(((U ()

where ¢ 1s a constant.
For the denominators, use that

.. a a;
mf—’ng k< sup 2
ib " Yikbe ib

to get similar bounds and finally

3 2

C = nm,{xXa--+X; X;:| X e Xy e C hd

<1_ > g A( [4] i—1 | l| i+1 k )<<1 + >
k—i (X X X Xier - Xk ) k—i

We also have to bound the quotient

dmk(xo"'xia-l’xi-kl"'xk”')
dm(xg- - X;_y, Xy Xgo )

=[Z IM(xg)- - M(x;_) M(x;) M(x; 1) M(x,) ﬁk+1lp

i

% 7[(:(0 .. ‘xk)yf‘(.\'o#h +»\'k):|

< [z IM(xo) - MUxs ) M) Mk 1) - M%) gl

-1
X ﬂ(xo e xk)yl“(.\'g;- +'\"H:I

This quotient R can be analogously bounded by (1—c/(k—i)})<R<
(1+c¢/(k—1)).
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Finally,
c \3
-[ dmZ\m(~~|x,-|---)+J dmZ[(l——.) —1]
Q/xi Xj Q/xi Xi k —1
sj.\'idmk
¢ 3
< dmva ] - )+J dmZ\[<1+—.> —1]
Q/x; /xi k—

But

k Y
J Z dm -0
(because

Lk=1 1

Egk

Ik dx
~% Jm — 0 i o0

i
and jx, dm is a finite quantity). Similarly the other terms containing
powers of 1/k —i) go to zero if k — co, and this proves the claim.

Recall that there exists an ergodic measure absolutely equivalent to m,
hm=ji*. Therefore, in order to prove that 1,(k) — A, when k — oo, it suf-
fices to show that

1 k=1 1 k-1

EJ Y x;hdm  and EJ Y, x;dm

Q-0 Q=0

have the same limit behavior.
To show this fact, it is enough to observe that by the ergodicity of /im,
and since x;e L3 (h dm), we have

1 k~1 k-1

§J Y x;dm= J Z (xgo ) h~"Yh dm

2 -0
- J Xoh dm J h="hdm= J Xoh dm

and

k—1

kf Z "’d""=;f Z (Yoor)hdm—»jvohdm
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3.8. Entropy

Let P be the partition (by cylinders) { C%} . y. We denote P¥ = P.
Here P is the partition whose atoms are the cylinders {C2,::" } .. ». The
partition P is countable, it has finite entropy, and it is generating. By the
Sinai theorem, if n — o0,

H; (Pv T7'Pv ... vT"P)>sh{i™)
where

i (\/ T—'P> H,(P™)= Y u(A)logu(A)
4]

Aepin

Similarly, for the measure m, we have

%H,,,k(P"")=lch,,,k(P vT-'Pv ... vT~'P)
-1 Y. my(A4)log m,(A)
kAEP”"’

Proposition 3.7. We have

1

% H, (P") > h(a*) as k— o

Proof. Compare first H,, and H,,. Arguments analogous to those of
Lemma 3.6 show that (1/k) H,,(P*') has the same limit behavior as
(1/k) H,(P“).

Let P*) the partition by atoms x,--- x,. We have

1
Hop(P*) = = [ dmy(x) log my(P*)
1
=— J dmi(x) log my(xo - x)
s Z J’ dm(x) log m(x; | Xy Xp)
'1 4]
ZL)/ dmi(Xo- Xy, Xy Koo )

_ank(io""\:i—l |2 &jpy o KoY logmy(x; | X400+~ %)
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Again, choose i and write

Then

k k
H,(P*) = ‘% Y. | dmix)log ""<T"P‘°> V T—fP‘°’)+r(k)
i=0 "8

j=i

The first term goes to h(m) and r(k) goes to zero when k — cc.
We have only to show that h(m)=h(hm), where hm=" is the
ergodic measure equivalent to m. We have the following lemma.

Lemma 3.8. Let P be a finite entropy partition. Then there exists a
constant C independent of P such that

|Hhm(P)_Hm(P)| < C

Proof. Let du=hdm. Write

|HHI

l_“d dm d,u m(P(x)),u(P(.\‘))
u(P(x))

d,udm 1 P(x)) m(P(x))
—jde‘ dm 8 m(P(x))

m{P(x))
=\ldudnlo <log |||l .
“ jedmlog 12 <log ]
It follows that
1 {k) 1 {k) C
‘ka(P )—kHlun(P ) k

so we conclude that (1/k) H,, (P'*"), which has the same limit behavior as
(1/k) H,(P*"), also has the same limit behavior as (1/k) H,,,(P'*'), which
goes to h(a™).
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3.9. The Conditional Entropy h,

Let P" be the partition by cylinders C;:'", . Let P, be the partition
of the square [0, 1] x [0, 1] corresponding to P". Let Q, be the “vertical”
partition P, x [0, 1]. Define the conditional entropy of m,, h,(m,), by

hy(m;)= _% f dm,(x) log (%"—))
Mk
1
= = ) dmy(xo- - xi) log [M(xo) - M(xi)us.|

We show that /4,(m,) has a limit when k — co, which we denote “lim,” and
that this “lim” is greater than or equal to the conditional entropy of g+,
h(i™").

More precisely, we show that /1,(»1,) has the same limit, for & — o0, as
H;+(P, | Q,), this limit being an upper bound for /(™).

Lemma 3.9. We have

lim H;+(P,| Q)= lim hm,

n— o n— oo

Proof. This is again the same argument. Write

(P | Q)= [ dmy(x) og |M(xo) - M(xe)u

[ M{x;)u; |

|t

1 k
=E,-:£‘0Jdmk()‘) log
where u; ., =M(x;,. ) M(x)uy, and |u;| =1.

By the same arguments, this quantity has the same limit behavior as

k
E Z Jdm(x) log |M(x,)u; |

k . .
=E EO j dm(x) F(t'x) = j dii* F(x) = “lim

where F(x)=log |M(xy)u,|.
We have the following proposition (m being the weak limit of the m,).

Proposition 3.10. We have

h(g*)<limh,(m,;)
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Proof. Let P, be fixed; there exists a vertical partition O, (n), with
| @iyl = O When n — o0, such that the limit 4, is attained for the partition

Pn l Qm(n):

1 ~
hl(ﬂ )— lim 10g/.l+m(P")_ hm - ﬁ"’(Pn | Qm(n))

= oo

where g% is the vertical conditional measure of g*. We have that
Qm(n P CP Then H *(Pn , Qm{n)) <H‘+(Pn , Qn) because Qm(n) raf_

fines Q,,, O, bemg the partltion P,x[0,1].
Now,

lim H,.(P,| Q,)= lim h(m,)

It follows that

hy(a*)=lim Hzo(P,| Qumim)

n— o

< lim H;.(P,| Q,)= lim h(m,)="lim”

"—OCC n— oo

4. CONCLUSION
Set

Gk=

Z (M(xo) M(Xl)"'M(xn)(vn+|))ﬂ

L 2NN
A simple identity between the partial derivatives of G, yields
ha(my) — hy(my) = Ao(m (= filoy + 6) — (o, + 6)) (%)
By Propositions 3.7 and 3.10 the limit of the Lh.s. of (*) satisfies
hoy(@F)—=“lim” < hy(A*)—h(a*)
On the other hand, by Lemma 3.6 and the continuity of f

kli_’frfﬁl M) —fillae +0) — (o + )] = A(A¥)[ f(a +0) — (a+6)]

Finally, by ref. 14 we know that the transverse dynamics relative to the
two-dimensional system (€2, 4%, ) obeys the relation

ho ™) —hy (AT )=2(A7) p(AT) (LY)
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where y(ji*) is the dimension of the projected measure of u*. Then, by
combining these relations, we have

MAAT)YYAET)=ho(F* ) —hi (AT ) 2 ho(i™) — “lim”
= (AN fla+6)—(x+6)]

This means

dimv* = —fla +6) — (x +9)

since v* is equivalent to the projected measure of 2.

On the other hand (cf. Section 3.6), v* is supported by pS(a + 9, a,).

This shows that actually HDpS(a+ 9, a;) = —f(a + ) + (e + 5).
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